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Abstract

e substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) has been known for the processing and transmission of orofacial
nociceptive information. Taurine, one of the most plentiful free amino-acids in humans, has proved to be involved in pain modulation. In this
study, using whole-cell patch clamp technique, we investigated the direct membrane effects of taurine and the action mechanism behind taurine-
mediated responses on the SG neurons of the Vc. Taurine showed non-desensitizing and repeatable membrane depolarizations and inward currents
which remained in the presence of amino-acid receptors blocking cocktail (AARBC) with tetrodotoxin, indicating that taurine acts directly on the
postsynaptic SG neurons. Further, application of taurine at different doses (10 μM to 3 mM) showed a concentration dependent depolarizations
and inward currents with the EC  of 84.3 μM and 723 μM, respectively. Taurine-mediated responses were partially blocked by picrotoxin (50 μM)
and almost completely blocked by strychnine (2 μM), suggesting that taurine-mediated responses are via glycine receptor (GlyR) activation. In
addition, taurine (1 mM) activated extrasynaptic GABA  receptor (GABA R)-mediated currents. Taken together, our results indicate that taurine
can be a target molecule for orofacial pain modulation through the activation of GlyRs and/or extrasynaptic GABA Rs on the SG neurons.

1. Introduction

Taurine (2-amino-ethane sulfonic acid) is one of the most plentiful free amino-acids in humans [1, 2]. In the human body, taurine is distributed
with high concentration in various tissues that are excitable and/or prone to generate free radicals in retina, white blood cells, platelets, central
nervous system (CNS), heart, skeletal muscles, spleen, and liver [3]. In physiological condition, taurine is accumulated in brain cells at
concentration of 5–70 mM [4, 5] and is released in high amounts under various pathological conditions such as anoxaemia or ischemia and seizure
[6–8]. Since its �rst discovery in 1827, a number of studies have been done to �nd out the various physiological functions and the signi�cance of
taurine. It has been reported that taurine has various functions including bile acid production [9–12], antiarrhythmic effects [13–15], and oxidant
scavenging effects [16]. In central nervous system, taurine has also been reported to modulate calcium homeostasis [17, 18], neuronal excitabilities
[19, 20], and excitotoxic cell death [21, 22].

e pain transmission from the orofacial region to the trigeminal subnucleus caudalis (Vc) is responsible by the �rst-order neurons via small-
diameter primary afferents including myelinated Aδ- and unmyelinated C-�bers [23, 24], which innervate in lamina I and in much of lamina II of
the Vc [25, 26]. e lamina II called substantia gelatinosa (SG), therefore, is thought to be a key site in the processing of orofacial nociceptive
information [27, 28]. e majority of neurons in the SG are local interneurons [29]. A substantial number of these interneurons contain gamma-
aminobutyric acid (GABA) and glycine which are oen colocalized in the same cell [30, 31]. As one of the main inhibitory neurotransmitters in the
central nervous system, GABA and glycine have pivotal roles in the modulation of nociception [32–35].

A number of studies have shown that taurine is involved in pain modulation. For example, systemic and intrathecal administration of taurine
induced the antinociceptive effects to inhibit the intensity of caudally-directed biting, scratching, and paw licking behaviors by chemical agent and
by the hot-plate test at acute pain tests in mouse [36, 37]. It has been reported that dietary supplementation with taurine suppresses hyperalgesia in
streptozotocin-induced diabetic rats and autotomy behavior in genetically selected Sabra strain rats [38]. In addition, Lee et al. showed that taurine
is released from neurons in the upper dorsal horn layers which are known to conduct nociceptive input [39]. ese previous reports have strongly
suggested that taurine can modulate nociceptive information. Similarly, Bereiter et al. reported that there was an elevation of taurine aer mustard
oil (a chemical irritant) injection through the skin into the temporomandibular joint region in rats [40]. However, the action mechanism of taurine
on the SG neurons which are involved in orofacial pain modulation has not been fully understood. In this study, therefore, we used the whole-cell
patch clamp technique to investigate the action mechanism of taurine on the SG neurons of the Vc.
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2. Materials and Methods

2.1. Animals

All experiments on living animals were rati�ed by Chonbuk University Animal Welfare and Ethics Committee. Immature male and female ICR
mice used in the present study were housed under 12-h light : 12-h dark cycles (lights on at 07:00 h) with access to food and water ad libitum.

2.2. Brain Slice Preparation

Brain slice preparation was similar to the work done by Park et al. [41]. Brie�y, the juvenile ICR mice (5-20 postnatal days) were decapitated and
their brains were excised quickly, immersed in ice-cold bicarbonate-buffered arti�cial cerebrospinal �uid (ACSF) with the following chemical
composition (in mM): 126 NaCl, 2.5 KCl, 2.4 CaCl , 1.2 MgCl , 11 D-glucose, 1.4 NaH PO , and 25 NaHCO  (pH 7.3~7.4, bubbled with 95% O
and 5% CO ). e trigeminal subnucleus caudalis segment was dissected, supported with a 4% agar block, and glued with cyanoacrylate to the
chilled stage of a vibratome (Microm, Walldorf, Germany). Coronal slices (150 μm in thickness, obtained 1-2 mm from the obex, the most rostral
part of Vc) were prepared in ice-cold ACSF using the vibratome. e slices were kept in oxygenated ACSF at room temperature for at least 1 h
before electrophysiological recording.

2.3. Electrophysiological Procedures and Data Analysis

e slices were transferred into a recording chamber, completely submerged, and continuously superfused with carboxygenated ACSF at a rate of
4-5 mL/min. e slices were viewed with an upright microscope (BX51W1, Olympus, Tokyo, Japan) with Nomarski differential interference
contrast optics. e SG (lamina II) was clearly identi�ed as a translucent band, just medial to the spinal trigeminal tract and traveled along the
lateral edge of the slice. e patch pipettes were pulled from thin-wall borosilicate glass-capillary tubing (PG52154-4, WPI, Sarasota, USA) on a
Flaming/Brown, puller (P-97, Sutter Instruments Co., Novato, CA). e pipette solution was passed through a disposable 0.22 μm �lter and
contained the following composition (in mM): 140 KCl, 1 CaCl , 1 MgCl , 10 HEPES, 4 MgATP, and 10 EGTA (pH 7.3 with KOH). In this study,
we used high chloride pipette solution to amplify the chloride mediated conductance. e resistance between the recording electrode �lled with
pipette solution and the reference electrode was 4–6 MΩ. Aer a gigaohm seal was formed with SG neuron, the cell membrane patch was ruptured
by negative pressure, and then the whole-cell patch clamp recording was performed using an Axopatch 200B (Axon Instruments, Union City, CA).
e changes in membrane potentials and membrane currents were sampled online using a Digidata 1322A interface (Axon Instruments)
connected to a desktop PC. e signals were �ltered (2 kHz, Bessel Filter of Axopatch 200B) before digitizing at a rate of 1 kHz. e holding
current was not adjusted during the experiment and was set at 0 pA in current clamp mode. e root mean square (RMS) noises were measured in
50 ms epochs of traces lacking postsynaptic currents (PSCs), in periods of control ACSF and in the presence of strychnine and strychnine + taurine
100 μM (  epochs in each case). e mean holding current changes within the control and treated period were calculated as the mean of
peak-to-peak amplitude of individual points within each period. e acquisition and subsequent analysis of the acquired data were performed
using Clampex9 soware (Axon Instruments, USA). e traces were plotted using Origin7 soware (MicroCal Soware, Northampton, USA). All
recordings were made at room temperature.

2.4. Drugs

e drugs used in the present study were taurine, strychnine, gabazine, picrotoxin, bicuculline (purchased from Sigma, USA), and tetrodotoxin
(TTX) (from Tocris, UK). Stocks of all drugs were made according to their solubility in DMSO and in distilled water. Stocks were diluted (usually
1,000 times) to the desired �nal concentrations in ACSF immediately before use and were applied by bath application (4 mL/min).

2.5. Statistics

All values were expressed as the mean ± S.E.M. A paired t-test and one way ANOVA test were used to examine the difference. Statistical
signi�cance was de�ned as .

3. Results

Whole cell current and voltage clamp recordings were obtained from 98 SG neurons from juvenile mice postnatal day ranging from day 5 to day
20. A series of experiments were designed to evaluate the effects of taurine on SG neurons. e mean resting membrane potential of SG neurons
tested in current clamp mode was −  mV ( ).

3.1. Taurine Induces Nondesensitizing Membrane Potential and Holding Current Changes on SG Neuron

In current and voltage clamp mode, taurine (100 μM) was applied repeatedly at 5-minute time intervals to determine if the SG neurons were
desensitized by successive application. In 7 SG neurons tested in current clamp mode, taurine (100 μM) induced repeated membrane
depolarizations (Figure 1(a)). When taurine was successively applied, the mean membrane potential change (  mV) by the second
application was similar to that of the �rst application (  mV, , , Figure 1(b)). Similarly, in voltage clamp mode at holding
potential of −60 mV, taurine (100 μM) induced repeated inward currents (Figure 1(c)). When taurine was successively applied, the mean inward
current (−  pA) by the second application was similar to that of the �rst application (−  pA, , , Figure 1(d)). ese
results indicate that SG neurons are not desensitized by the successively applied taurine that induces inhibitory depolarizing potentials or inward
currents, respectively, at current clamp or voltage clamp mode. e mean relative membrane depolarization and the mean relative inward current
of the second application were  ( ) and  ( ), respectively.

Figure 1: Repeated responses by the successive application of taurine on SG neurons. (a), (c) e representative traces show
the repeatable membrane depolarization and repeated inward current induced by taurine (100 μM). (b), (d) Bar graphs
illustrate the comparison of the mean membrane potential and inward current changes by the repeated application of taurine
(100 μM) ( ).

3.2. Postsynaptic Action of Taurine on SG Neurons

To investigate whether taurine affects SG neuronal activities via action potential mediated presynaptic release, the effects of taurine were examined
in the presence of tetrodotoxin (TTX), a voltage sensitive Na  channel blocker in current and voltage clamp mode. Taurine (100 μM) induced
membrane depolarization and when TTX (0.5 μM) was applied, spontaneous action potentials were rapidly abolished. However, TTX did not affect
the taurine-induced membrane depolarization. e mean membrane potential change (  mV, ) in the presence of TTX 0.5 μM was
similar to that of taurine alone (  mV, , ). Further, in voltage clamp experiment, the taurine-mediated inward current was
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not blocked by TTX. e mean inward current change (  pA, ) in the presence of TTX was similar to that of taurine alone (
 mV, , ) (�gure not shown). ese results indicate that taurine-induced responses were not mediated via any action

potential dependent presynaptic action on the SG neurons.

Further, we used amino-acid receptors blocking cocktail (AARBC) (6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) 10 μM and (2R)-amino-5-
phosphonovaleric acid (AP5) 20 μM, gabazine 3 μM along with tetrodotoxin (TTX) 0.5 μM) to �nd out if taurine affects SG neuronal activities
directly on the postsynaptic site. As shown in Figures 2(a) and 2(c), there were no signi�cant differences between the responses induced by taurine
alone and in the presence of AARBC. e amplitude of mean membrane depolarization induced by taurine alone (  mV, ) was
nearly similar to that of in the presence of AARBC (  mV, , , Figure 2(b)). Similarly, taurine-evoked mean inward currents
in taurine alone and in the presence of AARBC were also almost equal (  pA and  pA, resp., , , Figure 2(d)). ese
results put forth that taurine-mediated inward currents and depolarizations were purely postsynaptic events.

Figure 2: Taurine-induced membrane depolarizations and taurine-induced currents are mediated by postsynaptic SG neurons.
(a), (c) e representative traces showing membrane depolarization and inward current induced by taurine (100 μM) alone
and taurine in the presence of AARBC. (b), (d) Bar graphs showing the comparisons of mean relative membrane
depolarization and mean inward current by the taurine alone and taurine in the presence of AARBC ( ).

Taurine-induced membrane depolarizations and inward currents were examined at different concentrations ranging from 10 to 3,000 μM. Figures
3(a) and 3(c) show the representative traces indicating the clear concentration dependency by taurine applications. Taurine-induced membrane
depolarizations and inward currents were bigger at higher concentrations. Figure 3(b) illustrates the mean membrane depolarization changes by
taurine at different concentrations (10 μM:  mV, 30 μM:  mV, 100 μM:  mV, 300 μM:  mV, 1,000 μM: 

 mV, ) with an EC  of 84.3 μM. Similarly, there was an increase of mean inward currents following the rise of concentration in
voltage clamp mode as well (10 μM:  pA, 30 μM:  pA, 100 μM:  pA, 300 μM:  pA, 1,000 μM:  
pA, 3,000 μM:  pA, ) with an EC  of 723 μM. e values of EC  were estimated by curve �tting using Origin soware. is
discrepancy of EC  values between voltage and current clamp may be explained due to the activation of certain voltage-sensitive ion channels in
current clamp mode. ese concentration dependent responses also support that taurine acts on the postsynaptic site of SG neurons directly.

Figure 3: Concentration-response relationship. (a), (c) Representative traces of SG neurons showing the changes of membrane
depolarizations and inward currents to different doses of taurine (10, 30, 100, 300, 1,000, 3,000 μM). (b), (d) Curve �gures
showing the mean membrane potentials and the mean inward currents change which correspond with the concentration
changes (* , ** , *** , one-way ANOVA, Scheffe’s post hoc test).

3.3. Taurine Activates Glycine Receptors on SG Neurons

It has been reported that taurine can activate GlyRs in ventromedial hypothalamic neurons [42], supraoptic magnocellular neurons [43], cultured
neurons of auditory cortex [44], and anteroventral cochlear nucleus neurons [45]. To check whether taurine-induced membrane depolarizations
and inward currents on the SG neurons of the Vc were mediated by GlyR activation, strychnine, a selective GlyR antagonist was used. As shown in
Figures 4(a) and 4(c), taurine-induced membrane depolarization and current were almost blocked by strychnine (2 μM). e mean membrane
depolarizations induced by the application of taurine in the absence and presence of strychnine were  mV and  mV,
respectively ( , Figure 4(b), ). In addition, the mean inward current induced by taurine (  pA) was eliminated by the
simultaneous application with strychnine (  pA) ( , Figure 4(d), ).

Figure 4: Inhibition of taurine-induced membrane depolarization and inward current by strychnine on SG neurons of Vc. (a),
(c) Representative traces showing the taurine-induced membrane depolarization and taurine-induced inward current were
blocked by strychnine (2 μM), a glycine receptor (GlyR) antagonist. (b), (d) Bar graphs showing the comparisons of mean
relative membrane potential and inward current changed by the taurine alone and in the presence of strychnine (* , **

).

3.4. Taurine-Induced Actions Were Mediated via GlyRs and Extrasynaptic GABA  Receptors

It has been reported that taurine can activate GABA  receptors (GABA Rs) in various regions such as main olfactory bulb [46, 47], in the
hippocampal CA1 area [48], and in anteroventral cochlear nucleus neurons [45]. As gabazine is well known to block synaptic GABA Rs at lower
concentration [49] as well as extrasynaptic GABA Rs at higher concentration [50], taurine was applied in the presence of gabazine (3 μM).

e currents activated by taurine at 100 μM and 1,000 μM were not affected by 3 μM gabazine (Figures 5(a) and 5(c)). Figures 5(b) and 5(d)
compare the changes in inward currents between taurine alone (with two different concentrations 100 μM and 1,000 μM (  pA and 

 pA, resp.)) and taurine in the presence of gabazine 3 μM (  pA and  pA, resp.). erefore, at these concentrations, 
 are not affected by taurine. On the other hand, to identify whether taurine can act on extrasynaptic  on SG neurons, the

concentration of gabazine was increased to 50 μM (Figures 5(e) and 5(f)). e taurine-induced current was inhibited by gabazine at high
concentration (Figure 5(e)). Speci�cally, the mean inward current induced by taurine 1,000 μM (  pA) was reduced to  pA in the
presence of gabazine 50 μM (Figure 5(f), ). Further additional experiments in the presence of gabazine and bicuculline were conducted to
�gure out the activation of extrasynaptic  current by 1,000 μM taurine, and as expected, bicuculline blocked the taurine-induced inward
current in the presence of gabazine (Figures 5(g) and 5(h), ).
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Figure 5: Taurine-induced inward current is only sensitive to gabazine at high concentration on SG neurons. (a), (c), (e) e
representative traces showing the responses to taurine (100 μM and 1,000 μM) were not affected by gabazine 3 μM but were
affected by gabazine 50 μM. (b), (d), (f) Bar graphs showing no signi�cant difference about mean inward currents between the
application taurine alone and taurine in the presence of gabazine 3 μM ( ), but there was a considerable change in the
presence of gabazine 50 μM ( ). (g) e representative trace showing the inhibition of taurine-induced inward current
in the presence of gabazine by GABA  broad antagonist bicuculline (20 μM). (h) e bar graph showing the mean inward
current induced by taurine 1,000 μM in the presence of gabazine 3 μM and the mean remaining response aer being blocked
by bicuculline 20 μM ( ). Holding potential was −60 mV.

ere are a plethora of studies suggesting that the  receptor antagonist picrotoxin also blocks extrasynaptic homomeric glycine receptors
at lower concentration of 50–100 μM and is used extensively to characterize the glycine receptors on neuronal populations. So, here in this study we
tested taurine in the presence of picrotoxin to characterize the type GlyRs activated by taurine on SG neurons of Vc. Taurine-induced inward
currents on SG neurons were blocked by picrotoxin 50 μM (Figures 6(a) and 6(c)). e mean inward currents evoked by taurine 100 μM and 1,000 
μM were signi�cantly decreased in the presence of picrotoxin (50 μM). e mean inward currents evoked by taurine 100 μM and 1,000 μM in
absence and presence of picrotoxin were  pA;  pA and  pA; and  pA, respectively (Figures 6(b) and 6(d)).
ese results suggest that the SG neurons of Vc functionally express both heteromeric and homomeric GlyRs. Interestingly, it is very clear from
Figures 6(b) and 6(d) that the inhibition of 1,000 μM taurine-mediated response by picrotoxin (50 μM) was less than that of 100 μM taurine. is
result can be explained considering that there might be a possibility that at higher concentration of taurine may affect extrasynaptic . In
addition, at high concentration of picrotoxin (300 μM), 1,000 μM taurine-induced currents were further decreased (Figures 6(e) and 6(f)),
suggesting the activation of extrasynaptic  by higher concentration of taurine.

Figure 6: Taurine-induced inward current is sensitive to picrotoxin on SG neurons. (a), (c), (e) e representative traces
showing currents evoked by 100 μM and 1,000 μM taurine were blocked by picrotoxin 50 μM and 300 μM. (b), (d), (f)
Comparison of mean inward current changed by taurine alone with taurine in the presence of picrotoxin (* , **

). Holding potential was −60 mV.

Following this further, we also used another selective  antagonist, bicuculline, which follows the same pattern as picrotoxin does, that is,
blockade of homomeric GlyRs [51]. We con�rmed the inhibitory effect of bicuculline on taurine and glycine-mediated responses. Figures 7(a) and
7(c) show the inhibition of bicuculline on the taurine and glycine-induced currents. e mean inward currents by taurine 100 μM in the absence
and presence of bicuculline 10 μM were  pA and  pA (Figure 7(b)), respectively. Whereas the mean inward currents elicited
by glycine (100 μM) in the absence and presence of bicuculline (10 μM) were  pA and  pA (Figure 7(d), ), respectively.

Figure 7: Sensitivity of taurine- and glycine-induced current to bicuculline. (a), (c) Currents activated by taurine and glycine
were inhibited by bicuculline. (b), (d) e bar graphs show that mean inward currents effected by taurine and glycine were
both reduced by the simultaneous application of bicuculline ( ) Holding potential was −60 mV.

Further, in a quest to �gure out the actual extrasynaptic glycine and GABA  receptors mediated tonic currents by 1,000 μM taurine on SG neurons,
it was applied in the presence of strychnine. Strychnine dramatically blocked the synaptic currents and induced outward shi of the holding
current (Figure 8(a)). Presumably, this blockade of synaptic currents were via heteromeric GlyRs, and outward shi of holding current was induced
via extrasynaptic GlyRs. Moreover in the presence of strychnine, taurine (1,000 μM) induced the inward current with increase in RMS noise. RMS
noise in intact condition, in the presence of strychnine and in the presence of strychnine and taurine were  pA,  pA and 

 pA, respectively ( , Figure 8(b), ).

Figure 8: Taurine-mediated tonic conductance via extrasynaptic glycine and GABA receptors on SG neurons. (a) e
representative trace illustrated that strychnine 2 μM mediated an outward shi of holding current by blocking glycine-
mediated neurotransmission and blocked the taurine-induced synaptic currents except -mediated extrasynaptic
current. (b) e bar graph showing the comparison of RMS noise in intact condition, in the presence of strychnine 2 μM and
in the spontaneous application of taurine 1,000 μM and strychnine 2 μM (** ). Holding potential was −60 mV.

4. Discussion

e results of this study can be summarized as follows. SG neurons were not desensitized by the application of taurine. e taurine-induced
membrane depolarizations on SG neurons were mediated by postsynaptic actions. ere was concentration-response relationship between taurine
and SG neurons. Taurine acted as an agonist on both extrasynaptic homomeric and synaptic hetromeric GlyRs on the SG neurons. Taurine at
higher concentration could affect extrasynaptic .

Taurine has been demonstrated for its ability in modulation of synaptic transmission by activating GlyRs and/or Rs. However, the
physiological actions of taurine which can be upon either GlyRs or GABA Rs have been also proved to depend on the speci�c brain region studied
[46, 47]. For example, taurine activates both GABA Rs and GlyRs in neurons of the supraoptic nucleus, Xenopus oocytes, and the hippocampal
CA1 area [43, 48, 52] and activates only GABA Rs receptors in mitral and tued cells from the rat main olfactory bulb [47]. In addition, this
activation of taurine in some brain regions is concentration-dependent. For instance, in young rat hippocampus, nucleus accumbens, and adult rat
supraopic nucleus, taurine cannot only activate GlyRs at a low concentration (≤1 mM) but can activate GABA Rs as well at a high concentration
(≥3 mM) [43, 48, 53]. On the other hand, the �ndings by Song et al. in 2012 have shown that in anteroventral cochlear nucleus neurons, at low (0.1 
mM) and high (1 mM) concentrations, taurine can activate both GABA Rs and GlyRs [45].

In the mammalian CNS, GlyRs are formed by a combination of �ve distinct transmembrane protein subunits, one β subunit and four α subunit (
) [54, 55]. is composition in�uences in two different ways of forming functional receptors: the homomeric con�guration comprising �ve α

subunits and the heteromeric con�guration composed of 2α : 3β subunits [55–57]. e physiological and pharmacological properties of GlyRs are
dependent on the subunit combination. Picrotoxin, a antagonist, is proved as a standard tool to discriminate between homomeric and
heteromeric GlyRs [58]. At low concentration of 50–100 μM, picrotoxin selectively blocks homomeric GlyRs but not heteromeric receptors. In this
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study, to pharmacologically characterize the type of GlyRs present on SG neurons, taurine and glycine 100 μM were applied in the presence of
picrotoxin. e result indicate that glycine- and taurine-induced inward currents were partially blocked by picrotoxin (50 μM), suggesting the
presence of α homomeric GlyRs. However, this blockade was not complete and the unblocked remainder implies the activation of another GlyRs,
likely αβ heteromeric GlyRs. e result in this study puts forth that taurine activates not only the synaptic hetromeric GlyRs but also the
homomeric extrasynaptic GlyRs giving the tonic glycinergic inhibition on SG neurons, as established on spinal cord and hippocampal neurons [59,
60].

Another major inhibitory neurotransmitter in the CNS is GABA which mediates its most rapid effects via the ionotropic . 
which are pentameric ligand-gated ion channels consisting of diverse subunits are typically composed of two α and two β subunits together with γ2
subunit [61]. e difference of subunit composition in�uences not only the properties and function of receptors but also their distribution within
the cellular membrane [62, 63]. GABA  receptors, containing the γ2 subunit, are preferentially located in the synapse and generate “phasic”
inhibitory postsynaptic currents [64]. On the other hand, in some receptors, the δ subunit can take the place of the γ2 subunit. e existence of the
δ subunit leads to receptor expression in the extrasynaptic membrane and the activation of these receptor results in the generation of “tonically”
active currents [65–68]. In the present study, inward current with increased RMS noise by taurine 1,000 μM in the presence of strychnine and
unaffected current in the presence of gabazine 3 μM which blocks the synaptic suggests the activation of extrasynaptic  by
taurine 1,000 μM. e activation of extrasynaptic GABA Rs by taurine may have important physiological and pathophysiological effects to protect
neurons from toxicity under pathological conditions [22].

Glycine and GABA are known to be inhibitory neurotransmitters. Within the SG of the spinal dorsal horn, these neurotransmitters take part in the
modulation of sensory input by exerting powerful inhibitory effects on spontaneous and afferent evoked activity in second-order neurons [69]. In
previous studies, - and GlyR-mediated conductance have been found to have inhibitory effects on orofacial nociceptive input [70].
Likewise taurine has also been shown to have inhibitory effect on other brain areas [71]. In this study, activation of glycine and GABA receptors by
taurine on SG neurons has given a clear evidence that taurine behaves as an inhibitory neurotransmitter on the SG neurons of Vc. Because of this
property, taurine symbolizes essential targets in descending pathways to orofacial pain.

e signi�cant increase of taurine level in the brain under pathological conditions in response to electrical, chemical, and pain stimulation signals
that taurine may play a role in neuroprotection [72–74]. With the physiological ability to activate the inhibitory neurotransmitter receptor in SG
neurons, our results indicate that the in�uence of taurine on SG neurons may be an important modulation which has a part in the processing of
orofacial nociceptive information. Further researches need to be done to ascertain the antinociceptive role of taurine to orofacial pain.
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